Jag väljer turbo och det av den enkla anledningen att det är mycket lättare och billigare att få till väldigt mycket hästar. Kompressorljudet älskar jag från alla år på strippen men nuförtiden så är det turbo som gäller.
För er som verkligen vill veta vad det handlar om och inte bara gissar er fram finns det mycket att läsa om de olika varianterna på nätet. Här nedan en mycket intressant artikel:
Turbocharging vs. Supercharging
"Given equivalent vehicles, the turbo would easily motor away from the centrifugal in an acceleration contest......The turbo offered massive midrange torque production, the only system to exceed 600 lb-ft. Need more convincing? At 4,000 rpm, the turbo was more than 100 lb-ft. stronger than either the Roots or centrifugal." - Battle of the Boost, Hotrod Magazine, August 2003.
Similarities
Turbochargers and superchargers are similar in that they both compress air to higher than atmospheric pressures. Normal or standard atmospheric pressure is about 14.7 psi (pounds per square inch or "psi"). The job of the compressor common to both turbochargers and superchargers is to increase air pressure so that more air is forced into the cylinders ("forced induction"). This increased air volume ("boost") is mixed with a proportionately increased fuel volume which, when burned in the combustion cycle, results in increased horsepower and torque production. However, this is where the similarities between the two types of systems ends.
Differences
Power Curves
Because they are belt driven from the engine crankshaft, centrifugal and roots superchargers build boost as rpm increases in a linear fashion. As engine rpm increases, the supercharger compressor speed (and boost level) increases to the point of peak boost occurring at peak engine rpm. For example, a centrifugal or roots supercharger designed to produce 8 psi at 6,000 rpm may produce as little as 2.5 lbs. of boost at 3,000 rpm. Screw-type superchargers are more like turbochargers in that they build boost much earlier than a centrifugal or roots-type, but they are also belt-driven. Turbochargers, on the other hand, are exhaust driven, and come up to speed very quickly (almost instantly if properly sized), and will reach the same 8 lb. peak boost level as low as 2,500 rpm. The result is much more horsepower and torque being produced earlier at lower rpm levels with a turbocharger vs a centrifugal or roots supercharger.
Efficiency
Just like the air conditioner compressor on a car, all superchargers, including centrifugal, roots and screw-type, require horsepower to turn them. This "parasitic" drag is always present, even when the car is being driven normally, and can rob 20%-30% of the power being produced by the engine. The result is a significant decrease in fuel economy and less net power produced. Turbochargers, however, are exhaust gas driven and don't require any horsepower to spin the compressor. When driven normally, a turbocharged car will not consume more fuel and, in fact, gas mileage can actually increase. Even when under full throttle, a turbocharger system will produce as much horsepower at 9 psi as a supercharger at 12 psi.
Reliability
Both superchargers and turbochargers require high compressor rpm to compress the air. This ranges from 30,000-65,000 rpm in superchargers and can be even higher with turbos (over 100,000 rpm). In order to achieve the high rpm levels required to compress the air to the psi required, superchargers must have a step-up mechanism (gears, belts, pulleys or a combination thereof) consisting of numerous moving parts, to convert 6,000 engine rpm to the 40,000+ rpm necessary to build boost. Turbochargers need no step-up mechanism and have only one moving part, the compressor/turbine wheel assembly (see Figure 2). The simplicity of the turbocharger is therefore less prone to mechanical problems. Superchargers must have a belt to drive them, and belt slippage or breakage is a common problem. More serious problems include crankshaft, bearing and engine damage caused by belt tension forces on the crankshaft. Turbochargers have no belt and no direct mechanical connection to the crankshaft, thereby eliminating these problems. It is interesting to note that many automobiles and nearly all large over-the-road trucks use turbochargers that regularly log in excess of a million miles of reliable performance.
Maintenance
Some superchargers have a separate lubricating system that must be maintained, but turbochargers are lubricated by the engine oil and require no additional maintenance beyond what is normally required for a naturally aspirated car.
Streetability
Superchargers are always connected to the engine, they are always producing some level of boost and cannot be "turned off". Because turbochargers only produce boost when under load (as in full throttle acceleration), performance under normal driving conditions is no different than if the engine were naturally aspirated. Turbocharged cars exhibit excellent driveability characteristics.
Upgradability and Adjustability
Superchargers are generally not upgradeable. When higher performance is required beyond the capabilities of a specific supercharger system, the entire system must be replaced. Turbocharger systems, however, are usually upgradeable by simply upgrading or installing a larger turbocharger without requiring replacement of the entire system. Further, adjusting the boost levels on a supercharger requires removing and replacing pulleys, idlers and belts. Adjusting the boost levels on a turbocharger may be accomplished with a simple turn of a boost controller knob from the comfort of the inside of the car.
Value
At first glance, turbo systems may appear to cost more. However, if you consider everything that is included in a complete turbo kit that must be purchased in addition to the supercharger kit in order for the supercharger kit to be comparable (not even considering the performance differences), you may find the turbo system is less expensive and a much better horsepower per dollar value.
Conclusion
What does this all mean? Basically, an 8 psi turbo kit will produce more peak power due to the fact that a supercharger is using a fairly large amount of power just to get it spinning. What is more important for a street car is "power under the curve" meaning the average horsepower produced. This is where the turbo really shines since you can have full boost at as little as 2500 rpm! This will make the turbo car feel like it has 50% more cubic inches (or more). The difference in torque at low rpm's can be as much as 100 lb ft in favor of the turbo due to the additional available boost....now that's performance!
För er som verkligen vill veta vad det handlar om och inte bara gissar er fram finns det mycket att läsa om de olika varianterna på nätet. Här nedan en mycket intressant artikel:
Turbocharging vs. Supercharging
"Given equivalent vehicles, the turbo would easily motor away from the centrifugal in an acceleration contest......The turbo offered massive midrange torque production, the only system to exceed 600 lb-ft. Need more convincing? At 4,000 rpm, the turbo was more than 100 lb-ft. stronger than either the Roots or centrifugal." - Battle of the Boost, Hotrod Magazine, August 2003.
Similarities
Turbochargers and superchargers are similar in that they both compress air to higher than atmospheric pressures. Normal or standard atmospheric pressure is about 14.7 psi (pounds per square inch or "psi"). The job of the compressor common to both turbochargers and superchargers is to increase air pressure so that more air is forced into the cylinders ("forced induction"). This increased air volume ("boost") is mixed with a proportionately increased fuel volume which, when burned in the combustion cycle, results in increased horsepower and torque production. However, this is where the similarities between the two types of systems ends.
Differences
Power Curves
Because they are belt driven from the engine crankshaft, centrifugal and roots superchargers build boost as rpm increases in a linear fashion. As engine rpm increases, the supercharger compressor speed (and boost level) increases to the point of peak boost occurring at peak engine rpm. For example, a centrifugal or roots supercharger designed to produce 8 psi at 6,000 rpm may produce as little as 2.5 lbs. of boost at 3,000 rpm. Screw-type superchargers are more like turbochargers in that they build boost much earlier than a centrifugal or roots-type, but they are also belt-driven. Turbochargers, on the other hand, are exhaust driven, and come up to speed very quickly (almost instantly if properly sized), and will reach the same 8 lb. peak boost level as low as 2,500 rpm. The result is much more horsepower and torque being produced earlier at lower rpm levels with a turbocharger vs a centrifugal or roots supercharger.
Efficiency
Just like the air conditioner compressor on a car, all superchargers, including centrifugal, roots and screw-type, require horsepower to turn them. This "parasitic" drag is always present, even when the car is being driven normally, and can rob 20%-30% of the power being produced by the engine. The result is a significant decrease in fuel economy and less net power produced. Turbochargers, however, are exhaust gas driven and don't require any horsepower to spin the compressor. When driven normally, a turbocharged car will not consume more fuel and, in fact, gas mileage can actually increase. Even when under full throttle, a turbocharger system will produce as much horsepower at 9 psi as a supercharger at 12 psi.
Reliability
Both superchargers and turbochargers require high compressor rpm to compress the air. This ranges from 30,000-65,000 rpm in superchargers and can be even higher with turbos (over 100,000 rpm). In order to achieve the high rpm levels required to compress the air to the psi required, superchargers must have a step-up mechanism (gears, belts, pulleys or a combination thereof) consisting of numerous moving parts, to convert 6,000 engine rpm to the 40,000+ rpm necessary to build boost. Turbochargers need no step-up mechanism and have only one moving part, the compressor/turbine wheel assembly (see Figure 2). The simplicity of the turbocharger is therefore less prone to mechanical problems. Superchargers must have a belt to drive them, and belt slippage or breakage is a common problem. More serious problems include crankshaft, bearing and engine damage caused by belt tension forces on the crankshaft. Turbochargers have no belt and no direct mechanical connection to the crankshaft, thereby eliminating these problems. It is interesting to note that many automobiles and nearly all large over-the-road trucks use turbochargers that regularly log in excess of a million miles of reliable performance.
Maintenance
Some superchargers have a separate lubricating system that must be maintained, but turbochargers are lubricated by the engine oil and require no additional maintenance beyond what is normally required for a naturally aspirated car.
Streetability
Superchargers are always connected to the engine, they are always producing some level of boost and cannot be "turned off". Because turbochargers only produce boost when under load (as in full throttle acceleration), performance under normal driving conditions is no different than if the engine were naturally aspirated. Turbocharged cars exhibit excellent driveability characteristics.
Upgradability and Adjustability
Superchargers are generally not upgradeable. When higher performance is required beyond the capabilities of a specific supercharger system, the entire system must be replaced. Turbocharger systems, however, are usually upgradeable by simply upgrading or installing a larger turbocharger without requiring replacement of the entire system. Further, adjusting the boost levels on a supercharger requires removing and replacing pulleys, idlers and belts. Adjusting the boost levels on a turbocharger may be accomplished with a simple turn of a boost controller knob from the comfort of the inside of the car.
Value
At first glance, turbo systems may appear to cost more. However, if you consider everything that is included in a complete turbo kit that must be purchased in addition to the supercharger kit in order for the supercharger kit to be comparable (not even considering the performance differences), you may find the turbo system is less expensive and a much better horsepower per dollar value.
Conclusion
What does this all mean? Basically, an 8 psi turbo kit will produce more peak power due to the fact that a supercharger is using a fairly large amount of power just to get it spinning. What is more important for a street car is "power under the curve" meaning the average horsepower produced. This is where the turbo really shines since you can have full boost at as little as 2500 rpm! This will make the turbo car feel like it has 50% more cubic inches (or more). The difference in torque at low rpm's can be as much as 100 lb ft in favor of the turbo due to the additional available boost....now that's performance!
0
0
0
0